Guitar Method in All Fourths

v0.1

What Is All-fourths Tuning?

All-fourths tuning is an alternative guitar tuning, in which the top two strings of the guitar are tuned up a semitone. In this tuning the interval between all strings is a uniform fourth:

E A D G C F

In standard tuning (E A D G B E), there is a major third between the G and B strings. The presence of this major third does simplify barre-chord shapes, but it also creates a mental stumbling block that guitarists must learn to think around. This "glitch" in the tuning of the guitar more than triples the number of chord and scale shapes we must learn, and is an obstacle to visualisation of regular patterns.

Generations of guitarists have learned to work with this quirk in the guitar, but there is nothing forcing us to play in this tuning. If you keep tripping over a broken step, why not just fix it?

In all-fourths tuning, shapes repeat uniformly in all directions:

┌─3─┬───┬───┬─5─┬───┬───┬───┬───┬─1─┬───┬───┬───┬─3─┬───┬───┐
├───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┤
├───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┤
├───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┤
├───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┤
├───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┤
├───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┤
├───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┤
├─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┤
├─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┤
├───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┤
└───┴───┴───┴─1─┴───┴───┴───┴─3─┴───┴───┴─5─┴───┴───┴───┴───┘

( major triad - 1 3 5 )

Pros and Cons

While All-fourths tuning has some great advantages, it also has some down sides that may or may not suit you.

Pros

Cons

The main benefits of all-fourths tuning are the fact that there are fewer shapes to learn, and that the uniform fretboard allows you to play those shapes exactly the same everywhere.

In gaining these conveniences, you do lose the ability to play covers of music just as they were originally performed. If you really enjoy playing covers of your favourite guitarists, or if you rely heavily on reading music in TAB form, you may find that the trade-offs of all-fourths tuning are not worth it.

However, if you are focused on composing or improvising your own music, all-fourths can be an excellent choice. While some possibilities and familiar techniques may be lost, there are some new possibilities and ways of understanding the fretboard that are unique to instruments with uniform tunings.

The regularity of the fretboard simplifies how you can think about the notes and intervals, and how they fit together to form chords and scales.

Chords

One way to learn chords is to rote-memorise them. A more flexible way is to understand chord theory well enough that you can construct your own chords, finding different voicings for different situations while composing or improvising.

The information here is not intended to be simply memorized, but rather to help develop a certain way of thinking about music theory on the guitar.

Shapes are presented in only one location with the understanding that, in all-fourths tuning, any shape can be moved to any location on the fretboard, to accommodate any root on any string.

Chord formulas are presented in numeric form, naming the scale intervals over the root. (e.g. Major triad: '1 3 5', Minor triad: '1 b3 5')

Triads

Each triad has two inversions, for a total of three shapes per triad.

Major (1 3 5)

Root on the bottom            Root on the top                Root in the middle

F┌───┬───┬───┬───┬───┬───┐  F┌───┬───┬───┬───┬───┬───┐  F┌───┬───┬───┬───┬───┬───┐
C├───┼───┼───┼───┼───┼───┤  C├───┼───┼───┼───┼───┼───┤  C├───┼───┼───┼───┼───┼───┤
G├───┼─5─┼───┼───┼───┼───┤  G├───┼───┼─1─┼───┼───┼───┤  G├───┼───┼─3─┼───┼───┼───┤
D├───┼───┼───┼─3─┼───┼───┤  D├───┼───┼─5─┼───┼───┼───┤  D├───┼───┼───┼─1─┼───┼───┤
A├───┼───┼───┼───┼─1─┼───┤  A├───┼───┼───┼───┼─3─┼───┤  A├───┼───┼───┼─5─┼───┼───┤
E└───┴───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┴───┘

Note that these shapes combine to produce a repeating "meta shape", from which the three inversions have been extracted.

F┌─3─┬───┬───┬───┬───┬───┐
C├───┼─1─┼───┼───┼───┼───┤
G├───┼─5─┼───┼───┼───┼───┤
D├───┼───┼───┼─3─┼───┼───┤
A├───┼───┼───┼───┼─1─┼───┤
E└───┴───┴───┴───┴─5─┴───┘

It is useful to understand the relationship between major and minor triads. The minor is the same as the major, but with the third flattened by one semitone.

Minor (1 b3 5)

F┌───┬───┬───┬───┬───┬───┐  F┌───┬───┬───┬───┬───┬───┐  F┌───┬───┬───┬───┬───┬───┐
C├───┼───┼───┼───┼───┼───┤  C├───┼───┼───┼───┼───┼───┤  C├───┼───┼───┼───┼───┼───┤
G├───┼─5─┼───┼───┼───┼───┤  G├───┼───┼─1─┼───┼───┼───┤  G├───┼b3─┼───┼───┼───┼───┤
D├───┼───┼b3─┼───┼───┼───┤  D├───┼───┼─5─┼───┼───┼───┤  D├───┼───┼───┼─1─┼───┼───┤
A├───┼───┼───┼───┼─1─┼───┤  A├───┼───┼───┼b3─┼───┼───┤  A├───┼───┼───┼─5─┼───┼───┤
E└───┴───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┴───┘

Extensions

Based on the above triads, extended chords can be created simply by adding extra intervals relative to the root note

Major 7th (1 3 5 7)

F┌───┬───┬───┬───┬───┐          F┌───┬───┬─7─┬───┬───┐  F┌───┬───┬───┬───┬───┐
C├───┼───┼───┼───┼───┤          C├───┼───┼───┼───┼───┤  C├───┼───┼───┼─7─┼───┤
G├───┼───┼───┼─7─┼───┤          G├───┼─1─┼───┼───┼───┤  G├───┼─3─┼───┼───┼───┤
D├───┼─3─┼───┼───┼───┤          D├───┼─5─┼───┼───┼───┤  D├───┼───┼─1─┼───┼───┤
A├───┼───┼─1─┼───┼───┤          A├───┼───┼───┼─3─┼───┤  A├───┼───┼─5─┼───┼───┤
E└───┴───┴───┴───┴───┘          E└───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┘

Minor 7th (1 b3 5 b7)

F┌───┬───┬───┬───┬───┐          F┌───┬b7─┬───┬───┬───┐  F┌───┬───┬───┬───┬───┐
C├───┼───┼───┼───┼───┤          C├───┼───┼───┼(5)┼───┤  C├───┼───┼───┼b7─┼───┤
G├───┼───┼───┼b7─┼───┤          G├───┼─1─┼───┼───┼───┤  G├───┼b3─┼───┼───┼───┤
D├───┼b3─┼───┼───┼───┤          D├───┼─5─┼───┼───┼───┤  D├───┼───┼───┼─1─┼───┤
A├───┼───┼───┼─1─┼───┤          A├───┼───┼b3─┼───┼───┤  A├───┼───┼───┼─5─┼───┤
E└───┴───┴───┴───┴───┘          E└───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┘

Dominant 7th (1 3 5 b7)

F┌───┬───┬───┬───┬───┐          F┌───┬b7─┬───┬───┬───┐  F┌───┬───┬───┬───┬───┐
C├───┼───┼───┼───┼───┤          C├───┼───┼───┼(5)┼───┤  C├───┼───┼───┼b7─┼───┤
G├───┼───┼b7─┼───┼───┤          G├───┼─1─┼───┼───┼───┤  G├───┼───┼─3─┼───┼───┤
D├───┼─3─┼───┼───┼───┤          D├───┼─5─┼───┼───┼───┤  D├───┼───┼───┼─1─┼───┤
A├───┼───┼─1─┼───┼───┤          A├───┼───┼───┼─3─┼───┤  A├───┼───┼───┼─5─┼───┤
E└───┴───┴───┴───┴───┘          E└───┴───┴───┴───┴───┘  E└───┴───┴───┴───┴───┘

Shell Voicings:

These are great, easy-to-finger voicings for playing jazz style accompaniment. The fifth is left out to focus on the more flavoursome third and seventh notes. These simple shapes are also a good basis for building more complex chords by adding additional scale intervals such as 9, 11, and so on.

Major 7           Minor 7       Dominant 7

┌───┬───┬───┬───┐ ┌───┬───┬───┐ ┌───┬───┬───┬───┐
├───┼───┼─3─┼───┤ ├───┼b3─┼───┤ ├───┼───┼─3─┼───┤
├───┼───┼─7─┼───┤ ├───┼b7─┼───┤ ├───┼b7─┼───┼───┤
├───┼───┼───┼───┤ ├───┼───┼───┤ ├───┼───┼───┼───┤
├───┼─1─┼───┼───┤ ├───┼─1─┼───┤ ├───┼─1─┼───┼───┤
└───┴───┴───┴───┘ └───┴───┴───┘ └───┴───┴───┴───┘

Individual Intervals

To aid in creating new voicings of chords, it is useful to learn the shapes of specific single intervals that are commonly used in building chords. This greatly simplifies the construction of chords when using their formulas. These shapes can be thought of as Lego pieces that fit together to build, re-voice, and extend chords.

b3 (Flat Third)

See how a flat third looks, relative to the root:

┌───┬───┬───┬───┬─1─┬───┐
├b3─┼───┼───┼───┼───┼───┤
├───┼───┼─1─┼───┼───┼b3─┤
├───┼───┼───┼───┼───┼───┤
├─1─┼───┼───┼b3─┼───┼───┤
└───┴───┴───┴───┴───┴─1─┘

Learn the shapes of each individual pairing:

┌────┬───┬───┬───┐  ┌────┬───┬───┐  ┌───┐  ┌───┬───┐  ┌────┬───┬───┬───┬───┐
├────┼───┼───┼───┤  ├────┼───┼───┤  ├b3─┤  ├───┼───┤  ├────┼───┼───┼───┼───┤
├────┼───┼───┼───┤  ├────┼───┼───┤  ├───┤  ├─1─┼───┤  ├────┼───┼───┼───┼─1─┤
├──1─┼───┼───┼b3─┤  ├─b3─┼───┼───┤  ├───┤  ├───┼───┤  ├─b3─┼───┼───┼───┼───┤
├────┼───┼───┼───┤  ├────┼───┼─1─┤  ├─1─┤  ├───┼b3─┤  ├────┼───┼───┼───┼───┤
└────┴───┴───┴───┘  └────┴───┴───┘  └───┘  └───┴───┘  └────┴───┴───┴───┴───┘

3rd

┌───┬───┬───┬───┬───┬─1─┬───┬───┬───┐
├───┼───┼─3─┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┤
├─3─┼───┼───┼───┼───┼───┼───┼───┼─1─┤
├───┼─1─┼───┼───┼───┼─3─┼───┼───┼───┤
└───┴───┴───┴───┴───┴───┴─1─┴───┴───┘

┌───┬───┐  ┌───┬───┬───┬───┬───┐  ┌───┬───┐  ┌───┬───┬───┬───┐  ┌───┬───┬───┐ 
├───┼───┤  ├───┼───┼───┼───┼───┤  ├───┼───┤  ├───┼───┼───┼───┤  ├───┼───┼───┤ 
├───┼───┤  ├───┼───┼───┼───┼───┤  ├───┼─3─┤  ├───┼───┼───┼─1─┤  ├─1─┼───┼───┤ 
├─3─┼───┤  ├───┼───┼───┼───┼───┤  ├───┼───┤  ├─3─┼───┼───┼───┤  ├───┼───┼───┤ 
├───┼─1─┤  ├─1─┼───┼───┼───┼─3─┤  ├───┼───┤  ├───┼───┼───┼───┤  ├───┼───┼─3─┤ 
└───┴───┘  └───┴───┴───┴───┴───┘  └─1─┴───┘  └───┴───┴───┴───┘  └───┴───┴───┘ 

5th

┌─5─┬───┬───┬───┬───┬─1─┬───┐
├───┼───┼───┼───┼───┼─5─┼───┤
├───┼───┼───┼─1─┼───┼───┼───┤
├───┼───┼───┼─5─┼───┼───┼───┤
├───┼─1─┼───┼───┼───┼───┼───┤
└───┴─5─┴───┴───┴───┴───┴─1─┘

┌───┬───┬───┐  ┌───┬───┬───┬───┐  ┌───┬───┐  ┌───┐  
├───┼───┼───┤  ├───┼───┼───┼───┤  ├─5─┼───┤  ├───┤  
├───┼───┼─5─┤  ├─5─┼───┼───┼───┤  ├───┼───┤  ├───┤  
├─1─┼───┼───┤  ├───┼───┼───┼───┤  ├───┼───┤  ├─1─┤  
├───┼───┼───┤  ├───┼───┼───┼─1─┤  ├───┼───┤  ├─5─┤  
└───┴───┴───┘  └───┴───┴───┴───┘  └───┴─1─┘  └───┘  

7th

┌───┬───┬───┬───┬─7─┬─1─┬───┐
├───┼───┼───┼───┼───┼───┼───┤
├───┼───┼─7─┼─1─┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┤
├─7─┼─1─┼───┼───┼───┼───┼───┤
└───┴───┴───┴───┴───┴─7─┴─1─┘

┌───┬───┐  ┌───┬───┬───┐  ┌───┬───┐ 
├───┼───┤  ├───┼───┼───┤  ├───┼───┤ 
├───┼─7─┤  ├───┼───┼─1─┤  ├───┼───┤ 
├───┼───┤  ├───┼───┼───┤  ├─7─┼─1─┤ 
├─1─┼───┤  ├───┼───┼───┤  ├───┼───┤ 
└───┴───┘  └─7─┴───┴───┘  └───┴───┘ 

b7th

┌───┬───┬b7─┬───┬───┬───┐        
├───┼───┼───┼───┼───┼───┤     
├b7─┼───┼─1─┼───┼───┼───┤     
├───┼───┼───┼───┼───┼b7─┤     
├───┼───┼───┼───┼───┼───┤  
└───┴───┴───┴b7─┴───┴───┘    

┌───┐  ┌───┬───┐
├───┤  ├─1─┼───┤
├b7─┤  ├───┼───┤
├───┤  ├───┼───┤
├─1─┤  ├───┼b7─┤
└───┘  └───┴───┘

4th

┌───┬───┬───┬───┬───┬───┐
├───┼───┼─4─┼───┼───┼───┤
├───┼───┼─1─┼───┼───┼───┤
├─4─┼───┼───┼───┼───┼───┤
├─1─┼───┼───┼───┼───┼─4─┤
└───┴───┴───┴───┴───┴─1─┘

┌───┐  ┌───┬───┬───┐
├───┤  ├───┼───┼───┤
├───┤  ├───┼───┼─1─┤
├─4─┤  ├─4─┼───┼───┤
├─1─┤  ├───┼───┼───┤
└───┘  └───┴───┴───┘

6th

┌───┬───┬───┬─6─┬───┬───┬───┐  
├─1─┼───┼───┼───┼───┼───┼───┤
├───┼─6─┼───┼───┼───┼─1─┼───┤
├───┼───┼───┼───┼───┼───┼─6─┤
├───┼───┼───┼─1─┼───┼───┼───┤
└───┴───┴───┴───┴─6─┴───┴───┘

┌───┬───┐  ┌───┬───┐
├───┼───┤  ├─1─┼───┤
├─6─┼───┤  ├───┼─6─┤
├───┼───┤  ├───┼───┤
├───┼─1─┤  ├───┼───┤
└───┴───┘  └───┴───┘

Octave

┌───┬───┬─1─┬───┬───┬───┐
├───┼───┼───┼───┼───┼───┤
├─1─┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼─1─┤
├───┼───┼───┼───┼───┼───┤
└───┴───┴───┴─1─┴───┴───┘

┌───┬───┬───┬───┐   ┌───┬───┬───┬───┐   ┌─1─┬───┬───┬───┐  
├───┼───┼───┼───┤   ├─1─┼───┼───┼───┤   ├───┼───┼───┼───┤
├───┼───┼───┼─1─┤   ├───┼───┼───┼───┤   ├───┼───┼───┼───┤
├───┼───┼───┼───┤   ├───┼───┼───┼───┤   ├───┼───┼───┼─1─┤
├───┼─1─┼───┼───┤   ├───┼───┼───┼─1─┤   ├───┼───┼───┼───┤
└───┴───┴───┴───┘   └───┴───┴───┴───┘   └───┴─1─┴───┴───┘

Inverted Intervals

It is also useful to become aware of shapes that are inversions of each other. For example, in the case of the fourth and fifth. An inverted fifth is a fourth, and vice versa.

┌───┬───┬───┬───┬───┬───┐    ┌───┬───┬───┬───┬───┬───┐
├───┼───┼─4─┼───┼───┼───┤    ├───┼───┼─1─┼───┼───┼───┤
├───┼───┼─1─┼───┼───┼───┤    ├───┼───┼─5─┼───┼───┼───┤
├─4─┼───┼───┼───┼───┼───┤    ├─1─┼───┼───┼───┼───┼───┤
├─1─┼───┼───┼───┼───┼─4─┤    ├─5─┼───┼───┼───┼───┼─1─┤
└───┴───┴───┴───┴───┴─1─┘    └───┴───┴───┴───┴───┴─5─┘

A third is an inverted sixth...

┌───┬───┐  ┌───┬───┐   
├─3─┼───┤  ├─1─┼───┤   
├───┼─1─┤  ├───┼─6─┤   
├───┼───┤  ├───┼───┤   
├───┼───┤  ├───┼───┤   
└───┴───┘  └───┴───┘   

etc..

Scales

At first glance, seeing the entire fretboard as a single shape seems overwhelming, but once it is understood as a set of smaller shapes all fitting together, it becomes easier and easier to navigate.

┌─o─┬───┬─o─┬───┬─o─┬─o─┬───┬─o─┬───┬─o─┬───┬─o─┬─R─┬───┬─o─┐
├─o─┼───┼─o─┼───┼─o─┼─R─┼───┼─o─┼───┼─o─┼─o─┼───┼─o─┼───┼─o─┤
├─o─┼───┼─o─┼─o─┼───┼─o─┼───┼─o─┼───┼─o─┼─R─┼───┼─o─┼───┼─o─┤
├─o─┼───┼─o─┼─R─┼───┼─o─┼───┼─o─┼─o─┼───┼─o─┼───┼─o─┼───┼─o─┤
├─o─┼─o─┼───┼─o─┼───┼─o─┼───┼─o─┼─R─┼───┼─o─┼───┼─o─┼─o─┼───┤
└─o─┴─R─┴───┴─o─┴───┴─o─┴─o─┴───┴─o─┴───┴─o─┴───┴─o─┴─R─┴───┘

The Modes

Three-Note-Per-String Modes

In all-fourths tuning, there is no need to learn six-string patterns of scales. A single-octave scale pattern will repeat in all directions, and gives us great freedom to visualise lines in both horizontal and vertical directions.

These are the seven modes. Once you memorize the seven three-note-per-string shapes, you will discover that no matter where your hands fall on the fretboard, you are always playing one of these patterns.

Furthermore, the modes all fit into each other, overlapping, completely connected. This relationship between the seven shapes becomes a powerful method of navigating the fretboard.

Ionian (Major) - 1 2 3 4 5 6 7

┌───┬─7─┬─1─┬───┬───┐        ┌───┬─o─┬─o─┬───┬───┐
├─4─┼───┼─5─┼───┼─6─┤        ├─o─┼───┼─o─┼───┼─o─┤
└─1─┴───┴─2─┴───┴─3─┘        └─o─┴───┴─o─┴───┴─o─┘

Dorian - 1 2 b3 4 5 6 b7

┌b7─┬───┬─1─┬───┬───┐        ┌─o─┬───┬─o─┬───┬───┐
├─4─┼───┼─5─┼───┼─6─┤        ├─o─┼───┼─o─┼───┼─o─┤
└─1─┴───┴─2─┴b3─┴───┘        └─o─┴───┴─o─┴─o─┴───┘

Phrygian - 1 b2 b3 4 5 b6 b7

┌b7─┬───┬─1─┬───┬───┐        ┌─o─┬───┬─o─┬───┬───┐
├─4─┼───┼─5─┼b6─┼───┤        ├─o─┼───┼─o─┼─o─┼───┤
└─1─┴b2─┴───┴b3─┴───┘        └─o─┴─o─┴───┴─o─┴───┘

Lydian - 1 2 3 #4 5 6 7

┌───┬─7─┬─1─┬───┬───┐        ┌───┬─o─┬─o─┬───┬───┐
├───┼#4─┼─5─┼───┼─6─┤        ├───┼─o─┼─o─┼───┼─o─┤
└─1─┴───┴─2─┴───┴─3─┘        └─o─┴───┴─o─┴───┴─o─┘

Mixolydian 1 2 3 4 5 6 b7

┌b7─┬───┬─1─┬───┬───┐        ┌─o─┬───┬─o─┬───┬───┐
├─4─┼───┼─5─┼───┼─6─┤        ├─o─┼───┼─o─┼───┼─o─┤
└─1─┴───┴─2─┴───┴─3─┘        └─o─┴───┴─o─┴───┴─o─┘

Aolian (Minor) 1 2 b3 4 5 b6 b7 1

┌b7─┬───┬─1─┬───┬───┐        ┌─o─┬───┬─o─┬───┬───┐
├─4─┼───┼─5─┼b6─┼───┤        ├─o─┼───┼─o─┼─o─┼───┤
└─1─┴───┴─2─┴b3─┴───┘        └─o─┴───┴─o─┴─o─┴───┘

Locrian 1 b2 b3 4 b5 6 b7

┌b7─┬───┬─1─┬───┬───┐        ┌─o─┬───┬─o─┬───┬───┐
├─4─┼b5─┼───┼─6─┼───┤        ├─o─┼─o─┼───┼─o─┼───┤
└─1─┴b2─┴───┴b3─┴───┘        └─o─┴─o─┴───┴─o─┴───┘

"The One Scale":

After you have learned the above mode shapes, it will become more and more clear that these shapes all fit together into a single shape. Most of western music takes place entirely within this one shape. Let this shape sink in to your mind, and you will gain more and more freedom to "just play".

Examine the diagram below, and observe how all of the mode shapes fit into each other.

┌───┬───┬─G─┬───┬─A─┬───┬─B─┐
├───┼───┼─D─┼───┼─E─┼─F─┼───┤
├───┼───┼─A─┼───┼─B─┼─C─┼───┤
├───┼───┼─E─┼─F─┼───┼─G─┼───┤
├───┼───┼─B─┼─C─┼───┼─D─┼───┤    Locrian    
├───┼─F─┼───┼─G─┼───┼─A─┼───┤    Lydian
├───┼─C─┼───┼─D─┼───┼─E─┼───┤    Ionian (Major)
├───┼─G─┼───┼─A─┼───┼─B─┼───┤    Mixolydian
├───┼─D─┼───┼─E─┼─F─┼───┼───┤    Dorian
├───┼─A─┼───┼─B─┼─C─┼───┼───┤    Aolian (Minor)
└───┴─E─┴─F─┴───┴─G─┴───┴───┘    Phrygian Shape

Vertical and Horizontal Relationships Between Modes

In addition to stacking vertically in this way, the shapes fit together horizontally as well. As you practice the modes, become familiar with the relationships between the scale shapes. From any starting point, know which shape lies to the left, to the right, above, and below.

3            4            5            6            7            1            2
Phrygian    Lydian        Mixolydian    Aolian        Locrian     Ionian        Dorian

7            1            2            3            4            5            6    
Locrian     Ionian        Dorian        Phrygian    Lydian        Mixolydian    Aolian

4            5            6            7            1            2            3
Lydian        Mixolydian    Aolian        Locrian     Ionian        Dorian        Phrygian

1            2            3            4            5            6            7
Ionian        Dorian        Phrygian    Lydian        Mixolydian    Aolian        Locrian

Memorising the fretboard.

Apart from learning the scales and chords in terms of scale intervals and formulas, there are real benefits to making sure we know the alphabetical note names on the entire fretboard.

In all-fourths, there is a big simplification of the process of memorising the fretboard. Because the fretboard repeats evenly, there is only a single pattern to be learned, and only a single set of relationships to become familiar with.

For example: 'C' is always below an 'F', and a 'G' is always below a 'C', etc...

The Vertical Stack

This is a mental "trick" that can help with forming an awareness of how the various notes fit together on the fretboard.

There is only a single vertical sequence of notes in All-fourths tuning. These notes will always be found in this sequence, above and below each other.

F
C
G
D
A
E
B

The "Proof" of this can be seen in the diagram below. See how the vertical stack is found everywhere. In fact, it's all there is! This predictability is perhaps the most valuable thing about the all-fourths tuning.

┌───┬───┬─G─┬───┬─A─┬───┬─B─┐
├───┼───┼─D─┼───┼─E─┼─F─┼───┤
├───┼───┼─A─┼───┼─B─┼─C─┼───┤
├───┼───┼─E─┼─F─┼───┼─G─┼───┤
├───┼───┼─B─┼─C─┼───┼─D─┼───┤
├───┼─F─┼───┼─G─┼───┼─A─┼───┤
├───┼─C─┼───┼─D─┼───┼─E─┼───┤
├───┼─G─┼───┼─A─┼───┼─B─┼───┤
├───┼─D─┼───┼─E─┼─F─┼───┼───┤
├───┼─A─┼───┼─B─┼─C─┼───┼───┤
└───┴─E─┴─F─┴───┴─G─┴───┴───┘

Actually, the "vertical stack" is a well known sequence in music theory, known as the "Circle of Fourths", or the "Circle of Fifths", depending on which direction you are going in. There are already some common mnemonics for memorising the sequence.

From the top, going down, we are progressing through the circle of fifths (FCGDAEB), which is commonly memorised with the phrase:

Father Charles Goes Down And Ends Battle.

The same phrase backward gives us the cycle of fourths (BEADCFG):

Battle Ends And Down Goes Charles Father.

Also, note that the first four letters of the circle of fourths spells the word "BEAD".

Scale Pattern Tessellation

This is another mental "trick" that is unique to uniformly tuned instruments.

Due to the completely even and repeating layout of all-fourths tuning, all scale patterns can be tessellated in all directions. Every pattern fits together with itself on all sides. This was demonstrated above in "the one scale", and in how the "vertical stack" is repeated across the fretboard.

Let us use a simple Minor Pentatonic pattern as an example of how this works for any pattern. Many guitarists will know this familiar "blues box" shape:

┌───┬b7─┬───┬─1─┬───┬───┐   ┌───┬─o─┬───┬─o─┬───┬───┐
├───┼─4─┼───┼─5─┼───┼───┤   ├───┼─o─┼───┼─o─┼───┼───┤
└───┴─1─┴───┴───┴b3─┴───┘   └───┴─o─┴───┴───┴─o─┴───┘

Observe how the pattern simply repeats forever:

┌───┬─5─┬───┬───┬─7─┬───┬───┬───┬───┬───┬───┐
├───┼───┼b3─┼───┼─4─┼───┼───┼───┼───┼───┼───┤
├───┼───┼─7─┼───┼─1─┼───┼───┼───┼───┼───┼───┤
├───┼───┼─4─┼───┼─5─┼───┼───┼───┼───┼───┼───┤
├───┼───┼─1─┼───┼───┼b3─┼───┼───┼───┼───┼───┤
├───┼───┼─5─┼───┼───┼─7─┼───┼───┼───┼───┼───┤
├───┼───┼───┼b3─┼───┼─4─┼───┼───┼───┼───┼───┤
├───┼───┼───┼─7─┼───┼─1─┼───┼───┼───┼───┼───┤
├───┼───┼───┼─4─┼───┼─5─┼───┼───┼───┼───┼───┤
├───┼───┼───┼─1─┼───┼───┼b3─┼───┼───┼───┼───┤
├───┼───┼───┼─5─┼───┼───┼─7─┼───┼───┼───┼───┤
├───┼───┼───┼───┼b3─┼───┼─4─┼───┼───┼───┼───┤
└───┴───┴───┴───┴─7─┴───┴─1─┴───┴───┴───┴───┘

Now observe how the same pattern can be shifted and "fit into" itself.

This allows us you orient ourselves very quickly, always finding ourselves in familiar territory, as long as we maintain awareness of where we are relative to the root.

┌───┬─5─┬───┬───┬─7─┬───┬─1─┬───┬───┬───┬───┐
├───┼───┼b3─┼───┼─4─┼───┼─5─┼───┼───┼───┼───┤
├───┼───┼─7─┼───┼─1─┼───┼───┼b3─┼───┼───┼───┤
├───┼───┼─4─┼───┼─5─┼───┼───┼─7─┼───┼───┼───┤
├───┼───┼─1─┼───┼───┼b3─┼───┼─4─┼───┼───┼───┤
├───┼───┼─5─┼───┼───┼─7─┼───┼─1─┼───┼───┼───┤
├───┼───┼───┼b3─┼───┼─4─┼───┼─5─┼───┼───┼───┤
├───┼───┼───┼─7─┼───┼─1─┼───┼───┼b3─┼───┼───┤
├───┼───┼───┼─4─┼───┼─5─┼───┼───┼─7─┼───┼───┤
├───┼───┼───┼─1─┼───┼───┼b3─┼───┼─4─┼───┼───┤
├───┼───┼───┼─5─┼───┼───┼─7─┼───┼─1─┼───┼───┤
├───┼───┼───┼───┼b3─┼───┼─4─┼───┼─5─┼───┼───┤
└───┴───┴───┴───┴─7─┴───┴─1─┴───┴───┴b3─┴───┘

All-fourths and "CAGED"

This example shows the all-fourths version of the well known "CAGED" system found in standard tuning. In all-fourths tuning, "CAGED" is greatly simplified. If you examine the tessellated shape of the major triad below, you can find the familiar 'C' and 'E' shapes, but the 'A', 'G' and 'D' shapes do not exist.

┌─3─┬───┬───┬─5─┬───┬───┬───┬───┬─1─┬───┬───┬───┬─3─┬───┬───┐
├───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┤
├───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┤
├───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┤
├───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┤
├───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┤
├───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┤
├───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┤
├─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┤
├─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┼───┼───┼─5─┼───┼───┤
├───┼───┼─3─┼───┼───┼─5─┼───┼───┼───┼───┼─1─┼───┼───┼───┼─3─┤
└───┴───┴───┴─1─┴───┴───┴───┴─3─┴───┴───┴─5─┴───┴───┴───┴───┘

You are free to find any voicing you like within this pattern, starting from any string, and any location on the fretboard, as long as you maintain an awareness of the root note of the scale, and can visualise the intervals relative to that root.

Additional Shapes

Quartal Chords

Quartal chords are especially convenient to play in all-fourths tuning.

      1       2       3   4       5       6       7   8    
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
├───┼───┼13─┼───┼13─┼b13┼───┼13─┼───┼13─┼b13┼───┼b13┼───┼13─┤
├───┼───┼10─┼b10┼───┼b10┼───┼10─┼───┼10─┼b10┼───┼b10┼───┼10─┤
├───┼───┼─7─┼b7─┼───┼b7─┼───┼─7─┼b7─┼───┼b7─┼───┼b7─┼───┼─7─┤
├───┼─4─┼───┼─4─┼───┼─4─┼───┼#4─┼─4─┼───┼─4─┼───┼─4─┼─4─┼───┤
└───┴─1─┴───┴─1─┴───┴─1─┴─1─┴───┴─1─┴───┴─1─┴───┴─1─┴─1─┴───┘

Three note per string Pentatonics:

Fit together in endless possibilities...

Minor Pentatonic

┌─7─┬───┬─1─┬───┬───┬─3─┐
├─4─┼───┼─5─┼───┼───┼─7─┤
└─1─┴───┴───┴─3─┴───┴─4─┘

Major Pentatonic

┌─6─┬───┬───┬─1─┬───┬─3─┐
├─3─┼───┼───┼─5─┼───┼─6─┤
└───┴─1─┴───┴─2─┴───┴─3─┘

Bonus Material

Templates:

For your convenience, blank ascii templates.

Copy and paste these templates into a monospaced text editor to create your own diagrams.

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
E A D G C F
╒═╤═╤═╤═╤═╕
│ │ │ │ │ │
├─┼─┼─┼─┼─┤
│ │ │ │ │ │
├─┼─┼─┼─┼─┤
│ │ │ │ │ │
├─┼─┼─┼─┼─┤
│ │ │ │ │ │
├─┼─┼─┼─┼─┤
│ │ │ │ │ │
├─┼─┼─┼─┼─┤
│ │ │ │ │ │        
└─┴─┴─┴─┴─┘
E  A  D  G  C  F
╒══╤══╤══╤══╤══╕
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
├──┼──┼──┼──┼──┤
│  │  │  │  │  │
└──┴──┴──┴──┴──┘

Diagram with nut indicator:

╓───┬───┬───┬───┬───╖
╟───┼───┼───┼───┼───╢
╟───┼───┼───┼───┼───╢
╟───┼───┼───┼───┼───╢
╟───┼───┼───┼───┼───╢
╙───┴───┴───┴───┴───╜
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Standard Tuning

E╓───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───╖
B╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
G╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
D╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
A╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
E╙───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───╜

All-fourths tuning

F╓───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───╖
C╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
G╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
D╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
A╟───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───╢
E╙───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───╜

TAB Blank

┌───────────────────────────────────────────────────────────────────────────────┐
├───────────────────────────────────────────────────────────────────────────────┤
├───────────────────────────────────────────────────────────────────────────────┤
├───────────────────────────────────────────────────────────────────────────────┤
├───────────────────────────────────────────────────────────────────────────────┤
└───────────────────────────────────────────────────────────────────────────────┘

TAB Blank with bar lines

┌────────────────────┬──────────────────┬──────────────────┬────────────────────┐
├────────────────────┼──────────────────┼──────────────────┼────────────────────┤
├────────────────────┼──────────────────┼──────────────────┼────────────────────┤
├────────────────────┼──────────────────┼──────────────────┼────────────────────┤
├────────────────────┼──────────────────┼──────────────────┼────────────────────┤
└────────────────────┴──────────────────┴──────────────────┴────────────────────┘
back to top